# Advanced Custom Configuration
KUDO Kafka is aiming to provide out of the box optimized Kafka clusters on Kubernetes, which can be tuned and configured using the parameters.
Custom configurations empower the advanced Kafka user so they aren't restricted by the parameters currently exposed in the KUDO Kafka configuration.
KUDO Kafka allows configuring the following:
- custom broker configurations using CUSTOM_SERVER_PROPERTIES_CM_NAME
- custom metrics-reporter configurations using CUSTOM_METRICS_CM_NAME
# Custom broker configuration
To use the custom broker configuration, we need to create a configmap with the properties we want to override.
Example custom configuration:
apiVersion: v1
kind: ConfigMap
metadata:
name: custom-configuration
data:
server.properties: |
ssl.secure.random.implementation=SHA1PRNG
connection.failed.authentication.delay.ms=300
Create the ConfigMap in the namespace we will have the KUDO Kafka cluster
$ kubectl create -f custom-configuration.yaml -n kudo-kafka
configmap/custom-configuration created
Verify the ConfigMap is created correctly
$ kubectl get configmap custom-configuration -n kudo-kafka -o yaml
apiVersion: v1
data:
server.properties: |
ssl.secure.random.implementation=SHA1PRNG
connection.failed.authentication.delay.ms=300
kind: ConfigMap
metadata:
creationTimestamp: "2019-10-19T12:41:19Z"
name: custom-configuration
namespace: kudo-kafka
resourceVersion: "349819"
selfLink: /api/v1/namespaces/kudo-kafka/configmaps/custom-configuration
uid: 8a9f1520-ed3d-4b90-b544-a3e20d20fa5f
Now we are ready to start the KUDO Kafka cluster with custom configuration to be used with default tuned configuration.
$ kubectl kudo install kafka \
--instance=kafka --namespace=kudo-kafka \
-p ZOOKEEPER_URI=zk-zookeeper-0.zk-hs:2181,zk-zookeeper-1.zk-hs:2181,zk-zookeeper-2.zk-hs:2181 \
-p BROKER_COUNT=3 \
-p CUSTOM_SERVER_PROPERTIES_CM_NAME=custom-configuration
Verify in the logs if the custom configuration is being used in the Apache Kafka brokers and the KafkaConfig
is correctly using connection.failed.authentication.delay.ms
with value of 300
$ kubectl logs kafka-kafka-0 -n kudo-kafka
[2019-10-21 13:46:58,325] Appending custom configuration file to the server.properties...
ssl.secure.random.implementation=SHA1PRNG
connection.failed.authentication.delay.ms=300
Starting the kafka broker using broker.id 0...
[ ... lines removed for clarity ...]
compression.type = producer
connection.failed.authentication.delay.ms = 300
connections.max.idle.ms = 600000
connections.max.reauth.ms = 0
[ ... lines removed for clarity ...]
# Updating the custom configuration
The KUDO Kafka custom configuration ConfigMap isn't watched by the KUDO controller. Therefore any updates to the custom configurations will need a rolling restart of the statefulset.
Edit the configmap with changes we want to rollout:
$ kubectl edit configmap custom-configuration -n kudo-kafka
configmap/custom-configuration edited
Perform a rolling restart on the statefulset to reload the configmap.
$ kubectl rollout restart statefulset kafka-kafka -n kudo-kafka
statefulset.apps/kafka-kafka restarted
# ⚠️ Excludelist of the custom configuration
Users can update all the broker configuration properties except the following:
broker.id
listeners
advertised.listeners
advertised.host.name
listener.security.protocol.map
log.dirs
# Custom metrics reporter
To use the custom metrics reporter configuration we need to create a configmap with the metrics.yaml
we want to override.
Example of metrics configuration:
apiVersion: v1
kind: ConfigMap
metadata:
name: metrics-config
data:
metrics.properties: |
rules:
# Special cases and very specific rules
- pattern : kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
name: kafka_server_$1_$2
type: GAUGE
labels:
clientId: "$3"
topic: "$4"
partition: "$5"
To have KUDO Kafka detect correctly the custom metrics reporter configuration data
should have metrics.properties
Create the ConfigMap in the namespace we will have the KUDO Kafka cluster
$ kubectl create -f metrics-configuration.yaml -n kudo-kafka
configmap/metrics-config created
Verify the ConfigMap is created correctly
$ kubectl get configmap metrics-config -n kudo-kafka -o yaml
apiVersion: v1
data:
metrics.properties: |
rules:
# Special cases and very specific rules
- pattern : kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
name: kafka_server_$1_$2
type: GAUGE
labels:
clientId: "$3"
topic: "$4"
partition: "$5"
kind: ConfigMap
metadata:
creationTimestamp: "2019-10-21T17:45:41Z"
name: metrics-config
namespace: kudo-kafka
resourceVersion: "74591"
selfLink: /api/v1/namespaces/kudo-kafka/configmaps/metrics-config
uid: 70273127-e9d6-4e36-ba9a-0e00c78dfe51
Now we are ready to start the KUDO Kafka cluster with custom metrics reporter configuration
$ kubectl kudo install kafka \
--instance=kafka --namespace=kudo-kafka \
-p ZOOKEEPER_URI=zk-zookeeper-0.zk-hs:2181,zk-zookeeper-1.zk-hs:2181,zk-zookeeper-2.zk-hs:2181 \
-p BROKER_COUNT=3 \
-p CUSTOM_METRICS_CM_NAME=metrics-config
Verify that brokers have the correct metrics reporter configuration
$ kubectl exec -ti kafka-kafka-0 cat /metrics/metrics.properties
rules:
# Special cases and very specific rules
- pattern : kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
name: kafka_server_$1_$2
type: GAUGE
labels:
clientId: "$3"
topic: "$4"
partition: "$5"
# Updating the custom metrics reporter
Like the custom configuration the custom metrics reporter is also not watched by the KUDO controller. Therefore, any updates to the custom configurations will need a rolling restart to the statefulset.
Edit the configmap with changes we want to rollout:
$ kubectl edit configmap metrics-config -n kudo-kafka
configmap/metrics-config edited
Perform a rolling restart on the statefulset to reload the configmap.
$ kubectl rollout restart statefulset kafka-kafka -n kudo-kafka
statefulset.apps/kafka-kafka restarted